A Finite Element Analysis of Mid-Shaft Femoral Tolerance under Combined Axial-Bending Loading
نویسندگان
چکیده
Bone fractures occur frequently at mid-shaft femoral site during frontal and offset automotive crashes. Because these injuries are expensive, it is crucial to understand the injury mechanisms if this injury is to be prevented. The experimental investigation of femoral shaft tolerance under loading corresponding to real world accidents requires a challenging test setup that allows applying external loads in controlled conditions, mimics the boundary conditions of the femur, and measures the loads at the mid-shaft cross-section of the femur. In addition, the variability of mechanical and structural properties of the specimens complicates the determination of the injury tolerance of the femur under different loading conditions. A numerical alternative is presented in the current study. First, a subject specific finite element model of a femur is developed based on medical images. Then, the parameters of two material models frequently used to approximate the cortical bone properties are identified using the Successive Response Surface Methodology in the ranges reported in the literature. The objective function is defined based on the impact force data recorded during a three-point bending test and its corresponding numerical simulations. The polynomial meta-models implemented in LS-Opt converge at close values of the material parameters suggesting good performance of the heuristic design search in the current identification problem. The femoral tolerance at mid-shaft location is determined using a virtual test setup that applies combined axial –sagittal bending loading through an axial preload along the knee-hip line and a transversal impact load at the mid-shaft site along anterior-posterior or posterior-anterior directions. The femoral tolerance curves calculated based on external loads show sensitivity with respect to the impact direction of transversal load due to the initial curvature of the femur, but insignificant dependence on the material mode, or the failure criteria used for femoral cortical bone. In addition to suggesting a numerical approach that uses finite element simulations and optimization techniques to determine the injury tolerance of long bones, the results highlight the predominant role of the bending loading in a combined loading of the femur.
منابع مشابه
Hot Spot Stress Determination for a Tubular T-Joint under Combined Axial and Bending Loading
Finite element analysis of a tubular T-joint subjected to various loading conditions including pure axial loading, pure in-plane bending (IPB) and different ratios of axial loading to in-plane bending loading has been carried out. This effort has been established to estimate magnitudes of the peak hot spot stresses (HSS) at the brace/chord intersection and to find the corresponding locations as...
متن کاملInjury tolerance of tibia for the car-pedestrian impact.
Lower limbs are normally the first contacted body region during car-pedestrian accidents, and easily suffer serious injuries. The previous tibia bending tolerances for pedestrian safety were mainly developed from three-point bending tests on tibia mid-shaft. The tibia tolerances of other locations are still not investigated enough. In addition, tibia loading condition under the car-pedestrian i...
متن کاملParametric Study of Plastic Load of Cylindrical Shells With Opening Subject to Combined Loading
In this paper, the plastic limit load of cylindrical shells with opening subject to combined bending moment and axial force are found by finite element method using ANSYS suite of program. The effect of various parameters such as the geometrical ratios of shell and the shape, size, axial and angular position of the opening on the limit load of cylindrical shells under various loading conditions...
متن کاملNumerical and Experimental Study on Ratcheting Behavior of Steel Cylindrical Shells with/without Cutout Under Cyclic Combined and Axial Loading
Ratcheting behavior of steel 304L cylindrical shell under cyclic combined and axial loading are investigated in this paper, numerically. Cylindrical shells were fixed oblique at angle of 20° and normal with respect to the longitudinal direction of the shell and subjected to force-controlled cycling with non-zero mean force, which causes the accumulation of plastic deformation or ratcheting beha...
متن کاملInvestigating the Effectiveness of a Composite Patch on Repairing Pipes Subjected to Circumferential Cracks under Combined Loadings
The purpose of this study is to investigate bending moment and the axial load capacity of a pressurized pipe suffering from a through-wall circumferential crack repaired by a composite sleeve. The three-dimensional finite element method (FEM) was adopted to compute the results, and the failure assessment diagram (FAD) was employed to investigate the failure behavior of the repaired pipe. The fi...
متن کامل